KaAI
User Manual

Contents
1. GPS/IMU
2. CAN
3. Lidar
4. Camera
5. Eye Tracker Glasses
6. Uc-win/Road

Note:
You must have VLP16 of Velodyne (Lidar), panorama camera of
VSN V.360 (Camera), Tobii Pro glass (Eye tracker), Mobile eye, MTi-g-710 (GPS/IMU).
All sensors except eye trackers should be connected or attached to the car.

[bookmark: _<GPS/IMU>]<GPS/IMU>

1. Connect the MTi-g-710 to your computer via USB cable.

2. Enter the command below to check if the USB connection is successful.
$ ls /dev/ttyUSB0
(Enter the name of the yellow file in the terminal, and then change the USB port to check.)

3. Change the permissions on the file.
$ sudo chmod 777 /dev/ttyUSB0

4. Run
$ roscore
$ roslaunch mtig_driver mtig_driver.launch

[bookmark: _<CAN>]<CAN>
[image:]
1. You need to download some packages from
[image:]https://github.com/junha1125/Kvaser/tree/junha1125-English-Commend/Kvaser-0930
2. Move “autoware_can_msgs”,“autoware_msgs” Folders to ~/catkin_ws/src, and Build using $ cd ~/catkin_ws %% catkin_make.

3. After Building successfully, Move “kvaser” Folder to ~/catkin_ws/src, Build in the same way.

4. Now you have a complete workspace. Therefore type commands on the Ubuntu terminal step by step.
[image:]$ roscore
$ rosrun kvaser can_tx_to_raw
(ps. You had to connect Kvaser Device and check if your ROS is subscribing /can_tx)
$ rosrun kvaser can_Mobileye_Decoder
$ rosrun kvaser GPS_tude_to_XY

[Supporting Explanation]
ㆍcan_tx_to_raw : this node has a role converting /can_tx(real kvaser data) into /can_raw(important data among these).
ㆍcan_Mobileye_Decoder : this node subscribe /can_raw topics and decode available information like Obstacle Number, Obstacle Position, Lane Distance from my vehicle etc.. thereafter Publish /Mobileye_new topic.
ㆍGPS_tude_to_XY : this node subscribe GPS data(latitude/longitude), CAN data(Mobileye/NiroCan), Lidar data(Point cloud data). Calculate using the data so that we get my vehicle&obstacle information and XY-coordinate which we can utilize on Uc-win Road.
[bookmark: _<Lidar>]
<Lidar>
We used VLP16 of Velodyne.

1. Lidar Setting
1.1 Set up the environment
$ sudo apt-get install ros-kinetic-velodyne
$ sudo apt-get install wireshark
$ sudo wireshark

1.2 Check IP address and Port
[image:]
[image:]
1.3 Run “Networks Connections” and set as follows.
[image:]

2. Run Autoware.
[image:]
~/autoware/ros$./run

2.1 Modify name of sensing.yaml file in ~/autoware/ros/src/util/packages/runtime_manager/scripts
[image:]
This allows you to receive raw data in <velodyne_packets>..

2.2 Go to autoware in Sensing tap, launch and modify config_path of Velodyne VLP-16.
Path: home/can/autoware/ros/src/sensing/drivers/lidar/packages/velodyne/velodyne_pointcloud/params/VLP16db.yaml
[image:]
This params allows you to receive raw data in <points_raw>.

2.3 Launch the voxel_grid_filter, ray_ground_filter in the sensing tab.
[image:]
voxel_grid_filter helps reduce the number of Lidar points.
Ray_ground_filter helps remove points of ground.

2.4 Set and run the <lidar_eculidean_clutster_detect_param> as shown below.
[image:]
<lidar_eculidean_cluster_detect_param> publishes /boundingboxes topic from points_raw in Lidar.
We can use this data to locate the car. Its codes are made in GPS_tude_to_XY.

2.5 Run the Rviz, set the Fixed Frame to velodyne. Add the boundingBoxArray and select the name of /bounding_boxes. Additionally, add the pointcloud2 and select the name of points_raw.
[image:]

You can check the position of the bounding boxes by image.
But we directly subscribe topic of bounding boxes by ROS.

[bookmark: _<Camera>]<Camera>
First, connect the panoramic camera.
We used a VSN V.360 camera.

1. You should install usb_camera package in ROS.
$ sudo apt-get install ros-kinetic-uvc-camera
$ sudo apt-get install ros-kinetic-image-*
$ sudo apt-get install ros-kinetic-rqt-image-view

2. Modify name of sensing.yaml file in the
 ~/autoware/ros/src/util/packages/runtime_manager/scripts
[image:]
Depending on the computer environment, the device number may vary when camera is connected.
So you should check the number of devices and modify /video_number.
Ex) video1, video2, video3 …..

3. Launch USB Generic in the sensing tab.
[image:]

4. Download <yolov2.weights> and put in the
~/autoware/ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/darknet/data
Basically, autoware doesn't offer weights, so download and use the necessary weights.

5. Launch <vision_darknet_yolo2> in the Computing tab.
[image:]

6. Run Rviz and add ImageViewerPlugin panel and set as below.
[image:]
You can see that objects are detected by YOLO

[bookmark: _<Eye_Tracker_Glasses>]<Eye Tracker Glasses>

0. Program Environment: Windows10

1. First, you should prepare a recording unit(SD card) and software application, “Tobii Pro Glasses
Controller” from www.tobiipro.com/product-listing/tobii-pro-lab/
This program helps you can treat Eye Tracker Glasses to record a video clip.

2. Connect to your device with your computer.
2.1 If you will use it with wireless, find and connect to your Pro Glasses 2 via WLAN.
Look at the back of the Recording Unit for the serial number.
Initially, this will be the name of the WLAN network.
2.2 If using a wired connection, securely connect the Ethernet cable to the Recording Unit and to
your computer.

3. Launch Tobii Pro Glasses Controller and push “Creating a new recording” button.
And Set up the participant name and create a new recording.

4. Calibrate your device.
4.1 Hold the calibration image and have the participant focus on the center point
4.2 Press the calibrate button and allow the calibration process.
Then you are ready to record, Start recording

5. To analyze your recording data, install “Tobii Pro Lab Analyzer Edition” software from this link,
www.tobiipro.com/product-listing/tobii-pro-lab/

6. Connect SD card to your computer, and run Tobii Pro Lab Analyzer Edition, create a new project.

7. Import your data. At the Project Dashboard, press “Import > Glasses Recording”.
Locate and select the data ﬁle (*.ttgp) on the SD memory card to import it.
You are now ready to begin analyzing your data.
[bookmark: _<Uc-win/Road>]
<Uc-win/Road>

1. Explanation for Server.c
- Server.c receives data from ROS via TCP/IP and write them on Shared Memory

1.1 Preparing sockets for TCP/IP
- Include headers and define the port number
[image: EMB00003a24202c]

[image: EMB00003a242030]
- Variables for Creating & Initializing Socket

1.2 Creating a Shared Memory
- Define the size and path of a shared memory
[image: EMB00003a24202f]

- Variables for a shared memory
[image: EMB00003a24202d]

- Create a shared memory
[image: EMB00003a24202e]

1.3 Creating socket
- Initialize a socket
[image: EMB00003a242032]

- Set up the socket (waiting for a client)
[image: EMB00003a242033]

1.4 Receiving data from a ROS client
- Receive a string data
[image: EMB00003a242034]

- Write them to the shared memory
[image: EMB00003a242035]
1.5 Closing the socket and the shared memory
- Close the socket
[image: EMB00003a242036]
[image: EMB00003a242037]

- Close the shared memory
[image: EMB00003a242038]

2. Simulation on UC-win/Road
2.1 Open the map
- We created this map below. You might have to create a map that is compatible with your environment.
[image: EMB00003a242039]

2.2 Open the created files (by the shared memory)
- Each file contains the coordinates of each vehicle.
[image: EMB00003a24203a]
[bookmark: _GoBack]
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image1.png

image2.png

