Travel path finding algorithm minimizing COVID-19
infection risk

Based on the need to fight ongoing global pandemic of coronavirus disease 2019
(COVID-19) and the fact that there’s no existing application to predict the infection
risk of people’s travel in a city, we propose to develop an algorithm for travel path
finding to minimize infection risk.

1. Simulation of the traffic

2. Path finding with Dijkstra algorithm.
Path finding algorithm to minimize infection risk value of each travel.

»> After carrying out simulation and path finding algorithm,
for verification.

Data structure & Slmulatlon

City Design Map City Design Map

Use the part in the red rectangle * Connected components for * Maintain a Connectivity Matrix for

to build between each station between each station
* Time complexity for building it * Build it by traversing each road

m: number of points in the map * Will be used in Dijkstra algorithm
n: number of stations

BFS for each station: O(n*m)

Union-Find: O(m)

we did visualization

4r pre] prik 4

Representations

* Small red point: person moving in the city.
* Larger purple point: bus

* Purple circle around a bus: when the

station is inside the circle we know the bus
is about to arrive at the station

e White star: means that area is an

intersection. For now we set bus stations at
intersections

2000 4

3000 A

4000 -

Bus placement at an interval of 5 seconds bus thus the exposure risk when the traffic flow is on.

1000 2000 3000 The DLL program places buses regularly on each possible roads, and changes the number of people on each

B8 FORU

chCDWC

Team : TJTX

B Path finding with Dijkstra algorithm
For now we transfer at every station. At each transfer, we calculate exposure

risk and choose the path which minimize it.
Starting point : station 16, Destination : station 38

City Design Map City Design Map City Design Map City Design Map

] stationNum; 21
3000 - 4000 - fatontiug 21 e O stationNum: 22

230 EationNum: 22
StationNum: 16 gtationslenonsi 150

4200 A
3500 4

3750
stationMum:; 19 i
4000 PLATICRIR R An: 22 Staticnbum; 19
0
sta i IC |
4500

platonklurm: 33
gtaticnNum: 34 Num: 35

=

ttttttt Num: 36

t h : 35
NugtasibnNum: 38 4500 -

StationNum: 38 4800 4 o

fationNum: 38
stationNum: 39 ptaticnbum: 15 2
5000 4750 Fﬂnrﬂl‘m:ﬂjtlﬂn.‘u.ln‘ 36

etationNum: 38

stationfum: 38

5000
00 2000 500 ! T S =T T . : : : ; . . . : : :
1400 Stageplium: #oo 2000 2200 2400 1800 2000 2200 24C 1900 2000 2100 2200 2300 2400 2500

Step 1, the path is 16->15->21- Step 2, after reaching 15 and Step 3, after reaching 21 and Step 4, after reaching 22 and

>22->38 recalculating risk, the path is recalculating risk, the path is recalculating risk, the path is
15->21->19->33->34->37->36- 21->22->38 22->38
>38

Step 5, reach destination.

» As we can see, by Dijkstra algorithm with distance set as exposure risk
of transportation, physical distance of the path might be much longer,
hence a list of possible paths could be listed for user to choose.

» Algorithm can take into account both these two factors to give its own
recommendation, thus is like a heuristic algorithm, e.g. A* algorithm.

» For now, the exposure risk is set random. Simulation of the quality of
medium, i.e. temperature, air renewal rate, solar radiation, etc. could
result in a more realistic risk value.

» Associate buses, roads and stations, and make public transportation
schedule.

» Incorporate pedestrian simulator like REGION so that the human
mobility trace and contact can be analyzed, including when people are
in a bus or subway train.

