

Smart Image of Port Transport

12th CPWC **Pathfinder**

Introduction

With the rapid development of manufacturing and logistics industries, the demand for efficient and intelligent logistics solutions is growing. Efficiency issues in container transportation are increasingly evident, such as the lack of real-time equipment monitoring, absence of failure alerts, and operational errors. The digital twin system uses algorithms such as truck detection, shortest planning to build wharf in UC-win/Road software and import rich models to twin container loading status in real scenarios, and monitor the operating status, performance and operating parameters through a visual screen.

Cargo loading

Container loading

Digital Twin Syste

Path planning algorithms

Farget detection algorithms

Algorithm Development

Innovation

Digital twin system

- Improve loading / unloading efficiency
- Reduce management costs
- Avoid manual operation errors
- Transport process monitoring
- Transport path optimization
- Truck real-time monitoring
- Supply chain transparency enhancement

Real Wharf Scene

Operation

Step1: Twinning a video of a real scene. Step2: Different algorithms are used to plan shortest path and detect true Step3: The cargos and containers information is displayed on the larg

	Smart Image of Port Transport						2024/0/12 1	
_		111		Charles Marsher	Indexed Number			
ALC: NO	Track 001	wharf 1	2024-09-02 10 00 00	100	20	CONU8001215	Boat 021	
2	Truck 002	wharf 2	2024-09-02 12:00:00	150		CMAU1234567	Boat 003	
3	Truck 003	whart 3	2024-09-02 14:00:00	120	25	MAEU/054321	Bost_022	
14	Thuck_004	wharl_4	2024-09-02 16:00:00	130	15	HLCU9876543	Bost_005	
5	Truck_005	whart_2	2324-09-02 18:00:00	110	10	PONU4567830	Boat_001	
6	Truck_006	whart 3	2024-09-03 11:00:00	50	6)	TGHU2345678	Boat_004	
7	Truck_007	whart_1	2324-09-03 13:00:00	140	10	ZINU3456789	Boat_002	
8	Truck_008	whart_4	2024-09-04 12:00:00	70	60	SEGU8765432	Boat_005	
9	Truck_009	whart_2	2024-09-05 14:00:00	100	50	MSC1234567	Boat_036	
	lage 1 of 1	- in					1.1.17.	
					POLY CONTRACTOR	12 1	16	

Archive Database

We will improve the speed and accuracy of the algorithm.

Target Detection Algorithm

nformatio

Contain

Web Screen Visualization

The truck is con

Future

Automation and intelligence:

we will use deep learning technology to achieve automatic identification and classification of goods, greatly improving the efficiency of cargo ha

Equipment monitoring and fault prevention:

Through real-time monitoring and intelligent diagnosis technology. we will manage the port machinery and equipment throughout the life cycle to ensure the safety a